876 research outputs found

    Dynamical Masses in Luminous Infrared Galaxies

    Full text link
    We have studied the dynamics and masses of a sample of ten nearby luminous and ultraluminous infrared galaxies (LIRGS and ULIRGs), using 2.3 micron CO absorption line spectroscopy and near-infrared H- and Ks-band imaging. By combining velocity dispersions derived from the spectroscopy, disk scale-lengths obtained from the imaging, and a set of likely model density profiles, we calculate dynamical masses for each LIRG. For the majority of the sample, it is difficult to reconcile our mass estimates with the large amounts of gas derived from millimeter observations and from a standard conversion between CO emission and H_2 mass. Our results imply that LIRGs do not have huge amounts of molecular gas (10^10-10^11 Msolar) at their centers, and support previous indications that the standard conversion of CO to H_2 probably overestimates the gas masses and cannot be used in these environments. This in turn suggests much more modest levels of extinction in the near-infrared for LIRGs than previously predicted (A_V~10-20 versus A_V~100-1000). The lower gas mass estimates indicated by our observations imply that the star formation efficiency in these systems is very high and is triggered by cloud-cloud collisions, shocks, and winds rather than by gravitational instabilities in circumnuclear gas disks.Comment: 14 pages, 2 figures, accepted to Ap

    A Study of the Direct-Fitting Method for Measurement of Galaxy Velocity Dispersions

    Get PDF
    We have measured the central stellar velocity dispersions of 33 nearby spiral and elliptical galaxies, using a straightforward template-fitting algorithm operating in the pixel domain. The spectra, obtained with the Double Spectrograph at Palomar Observatory, cover both the Ca triplet and the Mg b region, and we present a comparison of the velocity dispersion measurements from these two spectral regions. Model fits to the Ca triplet region generally yield good results with little sensitivity to the choice of template star. In contrast, the Mg b region is more sensitive to template mismatch and to details of the fitting procedure such as the order of a polynomial used to match the continuum shape of the template to the object. As a consequence of the correlation of the [Mg/Fe] ratio with velocity dispersion, it is difficult to obtain a satisfactory model fit to the Mg b lines and the surrounding Fe blends simultaneously, particularly for giant elliptical galaxies with large velocity dispersions. We demonstrate that if the metallicities of the galaxy and template star are not well matched, then direct template-fitting results are improved if the Mg b lines themselves are excluded from the fit and the velocity dispersion is determined from the surrounding weaker lines.Comment: 14 pages. To appear in A

    Giant Shapiro steps for two-dimensional Josephson-junction arrays with time-dependent Ginzburg-Landau dynamics

    Full text link
    Two-dimensional Josephson junction arrays at zero temperature are investigated numerically within the resistively shunted junction (RSJ) model and the time-dependent Ginzburg-Landau (TDGL) model with global conservation of current implemented through the fluctuating twist boundary condition (FTBC). Fractional giant Shapiro steps are found for {\em both} the RSJ and TDGL cases. This implies that the local current conservation, on which the RSJ model is based, can be relaxed to the TDGL dynamics with only global current conservation, without changing the sequence of Shapiro steps. However, when the maximum widths of the steps are compared for the two models some qualitative differences are found at higher frequencies. The critical current is also calculated and comparisons with earlier results are made. It is found that the FTBC is a more adequate boundary condition than the conventional uniform current injection method because it minimizes the influence of the boundary.Comment: 6 pages including 4 figures in two columns, final versio

    Human dynamics revealed through Web analytics

    Full text link
    When the World Wide Web was first conceived as a way to facilitate the sharing of scientific information at the CERN (European Center for Nuclear Research) few could have imagined the role it would come to play in the following decades. Since then, the increasing ubiquity of Internet access and the frequency with which people interact with it raise the possibility of using the Web to better observe, understand, and monitor several aspects of human social behavior. Web sites with large numbers of frequently returning users are ideal for this task. If these sites belong to companies or universities, their usage patterns can furnish information about the working habits of entire populations. In this work, we analyze the properly anonymized logs detailing the access history to Emory University's Web site. Emory is a medium size university located in Atlanta, Georgia. We find interesting structure in the activity patterns of the domain and study in a systematic way the main forces behind the dynamics of the traffic. In particular, we show that both linear preferential linking and priority based queuing are essential ingredients to understand the way users navigate the Web.Comment: 7 pages, 8 figure

    Argentinian version of the Fear of COVID-19 Scale (FCV-19S): a review of possible structural models and its relationship with fear of death

    Get PDF
    During the pandemic caused by SARS-CoV-2, the Fear of COVID-19 Scale (FCV-19S) has become one of the main psycho-metric instruments used in research globally. The present study examined the psychometric properties of the Argentinian version of the FCV-19S. More specifically, the study analyzed and com-pared different possible models in order to determine which inter-nal structure fits better for the Argentinian FCV-19S. The sample comprised 505 adults from Argentina between 18 and 85 years (M = 45.44 years; SD = 17.08), of both genders (males = 33.5%; females = 66.5%). The results provided empirical support for a bi-factor structure with a general factor (α = .89) and two specific factors, that is, emotional response (α = .87) and physiological re-sponse (α = .83). Additionally, the associations between the FCV-19S and the Brief Fear of Death Scale (BFODS) provide evidence of validity related to other variables

    Integral Field Spectroscopy of 23 Spiral Bulges

    Get PDF
    We have obtained Integral Field Spectroscopy for 23 spiral bulges using INTEGRAL on the William Herschel Telescope and SPIRAL on the Anglo-Australian Telescope. This is the first 2D survey directed solely at the bulges of spiral galaxies. Eleven galaxies of the sample do not have previous measurements of the stellar velocity dispersion (sigma*). These data are designed to complement our Space Telescope Imaging Spectrograph program for estimating black hole masses in the range 10^6-10^8M_sun using gas kinematics from nucleated disks. These observations will serve to derive the stellar dynamical bulge properties using the traditional Mgb and CaII triplets. We use both Cross Correlation and Maximum Penalized Likelihood to determine projected sigma* in these systems and present radial velocity fields, major axis rotation curves, curves of growth and sigma* fields. Using the Cross Correlation to extract the low order 2D stellar dynamics we generally see coherent radial rotation and irregular velocity dispersion fields suggesting that sigma* is a non-trivial parameter to estimate.Comment: 11 pages, 30 figures, accepted for publication in ApJ

    Numerical Study of Spin and Chiral Order in a Two-Dimensional XY Spin Glass

    Full text link
    The two dimensional XY spin glass is studied numerically by a finite size scaling method at T=0 in the vortex representation which allows us to compute the exact (in principle) spin and chiral domain wall energies. We confirm earlier predictions that there is no glass phase at any finite T. Our results strongly support the conjecture that both spin and chiral order have the same correlation length exponent Μ≈2.70\nu \approx 2.70. We obtain preliminary results in 3d.Comment: 4 pages, 2 figures, revte

    Scaling determination of the nonlinear I-V characteristics for 2D superconducting networks

    Full text link
    It is shown from computer simulations that the current-voltage (II-VV) characteristics for the two-dimensional XY model with resistively-shunted Josephson junction dynamics and Monte Carlo dynamics obeys a finite-size scaling form from which the nonlinear II-VV exponent aa can be determined to good precision. This determination supports the conclusion a=z+1a=z+1, where zz is the dynamic critical exponent. The results are discussed in the light of the contrary conclusion reached by Tang and Chen [Phys. Rev. B {\bf 67}, 024508 (2003)] and the possibility of a breakdown of scaling suggested by Bormann [Phys. Rev. Lett. {\bf 78}, 4324 (1997)].Comment: 6 pages, to appear in PR
    • 

    corecore